Mtools

This manual is for Mtools (version 4.0.43, March 2023), which is a collection of tools to
allow Unix systems to manipulate MS-DOS files.

Copyright (© 2007, 2009 Free Software Foundation, Inc. Copyright © 1996-2005,2007-
2011,2013 Alain Knaff.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

Table of Contents

Introduction 1
1 Wheretoget mtools............................ 2

2 Common features of all mtools commands.... 3

2.1 Options and filenamest 3
2.2 Drive letters. ... e 3
2.3 Current working directoryo 4
2.4 VFAT-style long filenames ..., 4
2.5 Name clashes. ... e 5
2.6 Case sensitivity of the VFAT file system 6
2.7 high capacity formats........ 6
2.7 1 MOTE SECEOTS . ¢« v v v ettt 6
2.7.2 Bigger Sectorst 6
2 T v 7
2. 7.4 XDF 7
2.8 ExXit codes. .. .o 7
2.0 BUES . oo e 8

3.1 DesCriptionottt 9
3.2 Location of the configuration files................. 9
3.2.1 General configuration file syntax, 9
3.3 Default values...... ... 9
3.4 Global variables i 9
3.5 Per drive flags and variables............ L 10
3.5.1 General information i 10
3.5.2 Location information 11
3.5.3 Disk Geometry Configuration.................... ..., 11
3.54 OpenFlags.o 13
3.5.5 General Purpose Drive Variables.......................... 13
3.5.6 General Purpose Drive Flags.............................. 14
3.5.7 Supplying multiple descriptions for a drive................ 15
3.6 Location of configuration files and parsing order 16
3.7 Backwards compatibility with old configuration file syntax 16
4 Command list 17
41 Floppyd ..o e 17
4.1.1 Authenticationo, 17
4.1.2 Command line options.cooiiiiiii ... 17

4.1.3 Connecting to floppyd ... 18

4.1.4 Examples:oooiiiiiii 18
4.2 Floppyd_installtest i 18
4.3 Mattrib ..o 19
4.4 Mbadblocks 19

4.4.1 Command line options.............ooiiiiiiiiiiiiiinn... 20

442 BUZS oottt 20
4.5 MCat ..ot 20
4.6 Mced. oo 20
AT VI CODY « v vttt ettt 21

471 BUES o 22
4.8 Mdel. ..o 22
4.9 Mdeltreeo 22
410 MAir . oo 22
AT MU .o 23
412 Mformato 23

4.12.1 Number of sectors per cluster............................ 26
4.13 Mkmanifest ... 26

4.13.1 Exampleo 26

4.13.2 BUES « oot 27
4014 MINfo ..o 27
4.15 Mlabel ... 27
416 Mmd. ... 28
417 MmOUNt ..ottt 28
418 MImOVE. .o e 28
419 Mpartitionooiii i 28

4.19.1 Choice of partition typec.cooiiiiiiiiiiiii... 30
420 Mrd. ..o 30
421 MIeN. oottt 31
4.22 Mshortnameo e 31
4.23 Mshowfat 31
4.24 Mtoolstest ..ot 31
425 MEyDe o oo 31
426 MZID ... e 32

4.26.1 BUES . oo 32

5 Architecture specific compilation flags....... 33

6 Porting mtools to architectures which

are not supported yet 34
Command Index 37
Variable index........ 38

Concept index................ 39

ii

Introduction

Mtools is a collection of tools to allow Unix systems to manipulate MS-DOS files: read,
write, and move around files on an MS-DOS file system (typically a floppy disk). Where
reasonable, each program attempts to emulate the MS-DOS equivalent command. However,
unnecessary restrictions and oddities of DOS are not emulated. For instance, it is possible
to move subdirectories from one subdirectory to another.

Mtools is sufficient to give access to MS-DOS file systems. For instance, commands
such as mdir a: work on the a: floppy without any preliminary mounting or initialization
(assuming the default /etc/mtools.conf works on your machine). With mtools, one can
change floppies too without unmounting and mounting.

This manual is for Mtools (version 4.0.43, March 2023), which is a collection of tools to
allow Unix systems to manipulate MS-DOS files.

Copyright (© 2007, 2009 Free Software Foundation, Inc. Copyright © 1996-2005,2007-
2011,2013 Alain Knaff.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

1 Where to get mtools

Mtools can be found at the following places (and their mirrors):
http://ftp.gnu.org/gnu/mtools/mtools-4.0.43.tar.gz

These patches are named mtools-version-ddmm.taz, where version stands for the base
version, dd for the day and mm for the month. Due to a lack of space, I usually leave only
the most recent patch.

There is an mtools mailing list at info-mtools @ gnu.org . Please send all bug reports
to this list. You may subscribe to the list at https://lists.gnu.org/mailman/listinfo/info-
mtools. (N.B. Please remove the spaces around the "@". I left them there in order
to fool spambots.) Announcements of new mtools versions will also be sent to the
list, in addition to the Linux announce newsgroups. The mailing list is archived at
http://lists.gnu.org/pipermail /info-mtools/

2 Common features of all mtools commands

2.1 Options and filenames

MS-DOS filenames are composed of a drive letter followed by a colon, a subdirectory, and
a filename. Only the filename part is mandatory, the drive letter and the subdirectory
are optional. Filenames without a drive letter refer to Unix files. Subdirectory names can
use either the ’/’ or '\’ separator. The use of the ’\’ separator or wildcards requires the
names to be enclosed in quotes to protect them from the shell. However, wildcards in Unix
filenames should not be enclosed in quotes, because here we want the shell to expand them.

The regular expression "pattern matching" routines follow the Unix-style rules. For
example, ‘*’ matches all MS-DOS files in lieu of ‘*.*’. The archive, hidden, read-only and
system attribute bits are ignored during pattern matching.

All options use the - (minus) as their first character, not / as you’d expect in MS-DOS.

Most mtools commands allow multiple filename parameters, which doesn’t follow MS-
DOS conventions, but which is more user-friendly.

Most mtools commands allow options that instruct them how to handle file name clashes.
See Section 2.5 [name clashes], page 5, for more details on these.

All commands accept the -i flag which allows to specify an image file (See Section 2.2
[drive letters], page 3).

All commands accept the -V flag which prints the version, and most accept the -v flag,
which switches on verbose mode. In verbose mode, these commands print out the name of
the MS-DOS files upon which they act, unless stated otherwise. See Chapter 4 [Commands],
page 17, for a description of the options which are specific to each command.

2.2 Drive letters

The meaning of the drive letters depends on the target architectures. However, on most
target architectures, drive A is the first floppy drive, drive B is the second floppy drive (if
available), drive J is a Jaz drive (if available), and drive Z is a Zip drive (if available). On
those systems where the device name is derived from the SCSI id, the Jaz drive is assumed
to be at SCSI target 4, and the Zip at SCSI target 5 (factory default settings). On Linux,
both drives are assumed to be the second drive on the SCSI bus (/dev/sdb). The default
settings can be changes using a configuration file (see Chapter 3 [Configuration], page 9).

The drive letter : (colon) has a special meaning. It is used to access image files which
are directly specified on the command line using the -i options.
Example:
mcopy -i my-image-file.bin ::filel ::file2 .
This copies filel and file2 from the image file (my-image-file.bin) to the /tmp
directory.

You can also supply an offset within the image file by including @@offset into the file
name.

Example:
mcopy -i my-image-file.bin@@1M ::filel ::file2 .
This looks for the image at the offset of 1M in the file, rather than at its beginning.

Chapter 2: Common features of all mtools commands 4

2.3 Current working directory

The mcd command (Section 4.6 [mcd], page 20) is used to establish the device and the
current working directory (relative to the MS-DOS file system), otherwise the default is
assumed to be A:/. However, unlike MS-DOS, there is only one working directory for all
drives, and not one per drive.

2.4 VFAT-style long file names

This version of mtools supports VFAT style long filenames. If a Unix filename is too long
to fit in a short DOS name, it is stored as a VFAT long name, and a companion short name
is generated. This short name is what you see when you examine the disk with a pre-7.0
version of DOS. The following table shows some examples of short names:

Long name MS-DOS name Reason for the change
thisisatest THISIS™1 filename too long
alain.knaff ALAIN™1.KNA extension too long
prn.txt PRN™1.TXT PRN is a device name
.abc ABC™1 null filename
hot+cold HOT_CO™1 illegal character

As you see, the following transformations happen to derive a short name:
e Illegal characters are replaced by underscores. The illegal characters are
=11, \"$\\<>/7: |
e Extra dots, which cannot be interpreted as a main name/extension separator are re-
moved

e A “n number is generated,
e The name is shortened so as to fit in the 8+3 limitation
The initial Unix-style file name (whether long or short) is also called the primary name,
and the derived short name is also called the secondary name.
Example:
mcopy /etc/motd a:Reallylongname

Mtools creates a VFAT entry for Reallylongname, and uses REALLYLO as a short name.

Reallylongname is the primary name, and REALLYLO is the secondary name.
mcopy /etc/motd a:motd

Motd fits into the DOS filename limits. Mtools doesn’t need to derivate another name.
Motd is the primary name, and there is no secondary name.

In a nutshell: The primary name is the long name, if one exists, or the short name if
there is no long name.

Although VFAT is much more flexible than FAT, there are still names that are not
acceptable, even in VFAT. There are still some illegal characters left (\"*\\<>/7:1]), and
device names are still reserved.

Unix name Long name Reason for the change

prn prn-1 PRN is a device name

Chapter 2: Common features of all mtools commands 5

ab:c ab_c-1 illegal character
As you see, the following transformations happen if a long name is illegal:
e Illegal characters are replaces by underscores,

e A -n number is generated,

2.5 Name clashes

When writing a file to disk, its long name or short name may collide with an already existing
file or directory. This may happen for all commands which create new directory entries,
such as mcopy, mmd, mren, mmove. When a name clash happens, mtools asks you what it
should do. It offers several choices:

overwrite
Overwrites the existing file. It is not possible to overwrite a directory with a
file.
rename Renames the newly created file. Mtools prompts for the new filename
autorename
Renames the newly created file. Mtools chooses a name by itself, without
prompting
skip Gives up on this file, and moves on to the next (if any)

To chose one of these actions, type its first letter at the prompt. If you use a lower case
letter, the action only applies for this file only, if you use an upper case letter, the action
applies to all files, and you won’t be prompted again.

You may also chose actions (for all files) on the command line, when invoking mtools:

-Do Overwrites primary names by default.
-DO Overwrites secondary names by default.
-Dr Renames primary name by default.

-DR Renames secondary name by default.

-D a Autorenames primary name by default.

-D A Autorenames secondary name by default.
-Ds Skip primary name by default.

-DS Skip secondary name by default.

-Dm Ask user what to do with primary name.
-DM Ask user what to do with secondary name.

Note that for command line switches lower/upper differentiates between pri-
mary /secondary name whereas for interactive choices, lower/upper differentiates between
just-this-time/always.

The primary name is the name as displayed in Windows 95 or Windows NT: i.e. the
long name if it exists, and the short name otherwise. The secondary name is the "hidden"
name, i.e. the short name if a long name exists.

Chapter 2: Common features of all mtools commands 6

By default, the user is prompted if the primary name clashes, and the secondary name
is autorenamed.

If a name clash occurs in a Unix directory, mtools only asks whether to overwrite the
file, or to skip it.

2.6 Case sensitivity of the VFAT file system

The VFAT file system is able to remember the case of the filenames. However, filenames
which differ only in case are not allowed to coexist in the same directory. For example
if you store a file called LongFileName on a VFAT file system, mdir shows this file as
LongFileName, and not as Longfilename. However, if you then try to add LongFilename to
the same directory, it is refused, because case is ignored for clash checks.

The VFAT file system allows you to store the case of a filename in the attribute byte, if
all letters of the filename are the same case, and if all letters of the extension are the same
case too. Mtools uses this information when displaying the files, and also to generate the
Unix filename when mcopying to a Unix directory. This may have unexpected results when
applied to files written using an pre-7.0 version of DOS: Indeed, the old style filenames map
to all upper case. This is different from the behavior of the old version of mtools which
used to generate lower case Unix filenames.

2.7 high capacity formats

Mtools supports a number of formats which allow storage of more data on disk than usual.
Due to different operating system abilities, these formats are not supported on all operating
systems. Mtools recognizes these formats transparently where supported.

In order to format these disks, you need to use an operating system specific tool. For
Linux, suitable floppy tools can be found in the fdutils package at the following locations™:

http://www.fdutils.linux.lu/.

See the manual pages included in that package for further detail: Use superformat to
format all formats except XDF, and use xdfcopy to format XDF.

2.7.1 More sectors

The oldest method of fitting more data on a disk is to use more sectors and more cylinders.
Although the standard format uses 80 cylinders and 18 sectors (on a 3 1/2 high density
disk), it is possible to use up to 83 cylinders (on most drives) and up to 21 sectors. This
method allows to store up to 1743K on a 3 1/2 HD disk. However, 21 sector disks are twice
as slow as the standard 18 sector disks because the sectors are packed so close together that
we need to interleave them. This problem doesn’t exist for 20 sector formats.

These formats are supported by numerous DOS shareware utilities such as fdformat
and vgacopy. In his infinite hubris, Bill Gate$ believed that he invented this, and called
it ‘DMF disks’, or ‘Windows formatted disks’. But in reality, it has already existed years
before! Mtools supports these formats on Linux, on SunOS and on the DELL Unix PC.

2.7.2 Bigger sectors

By using bigger sectors it is possible to go beyond the capacity which can be obtained by
the standard 512-byte sectors. This is because of the sector header. The sector header has

Chapter 2: Common features of all mtools commands 7

the same size, regardless of how many data bytes are in the sector. Thus, we save some
space by using fewer, but bigger sectors. For example, 1 sector of 4K only takes up header
space once, whereas 8 sectors of 512 bytes have also 8 headers, for the same amount of
useful data.

This method permits storage of up to 1992K on a 3 1/2 HD disk.

Mtools supports these formats only on Linux.

2.7.3 2m

The 2m format was originally invented by Ciriaco Garcia de Celis. It also uses bigger sectors
than usual in order to fit more data on the disk. However, it uses the standard format (18
sectors of 512 bytes each) on the first cylinder, in order to make these disks easier to handle
by DOS. Indeed this method allows you to have a standard sized boot sector, which contains
a description of how the rest of the disk should be read.

However, the drawback of this is that the first cylinder can hold less data than the others.
Unfortunately, DOS can only handle disks where each track contains the same amount of
data. Thus 2m hides the fact that the first track contains less data by using a shadow FAT.
(Usually, DOS stores the FAT in two identical copies, for additional safety. XDF stores
only one copy, but tells DOS that it stores two. Thus the space that would be taken up by
the second FAT copy is saved.) This also means that you should never use a 2m disk to
store anything else than a DOS file system.

Mtools supports these formats only on Linux.

2.7.4 XDF

XDF is a high capacity format used by OS/2. It can hold 1840 K per disk. That’s lower
than the best 2m formats, but its main advantage is that it is fast: 600 milliseconds per
track. That’s faster than the 21 sector format, and almost as fast as the standard 18 sector
format. In order to access these disks, make sure mtools has been compiled with XDF
support, and set the use_xdf variable for the drive in the configuration file. See Chapter 5
[Compiling mtools|, page 33, and Section 3.5.5 [miscellaneous variables], page 13, for details
on how to do this. Fast XDF access is only available for Linux kernels which are more
recent than 1.1.34.

Mtools supports this format only on Linux.

Caution / Attention distributors: If mtools is compiled on a Linux kernel more recent
than 1.3.34, it won’t run on an older kernel. However, if it has been compiled on an older
kernel, it still runs on a newer kernel, except that XDF access is slower. It is recommended
that distribution authors only include mtools binaries compiled on kernels older than 1.3.34
until 2.0 comes out. When 2.0 will be out, mtools binaries compiled on newer kernels may
(and should) be distributed. Mtools binaries compiled on kernels older than 1.3.34 won’t
run on any 2.1 kernel or later.

2.8 Exit codes

All the Mtools commands return 0 on success, 1 on utter failure, or 2 on partial failure. All
the Mtools commands perform a few sanity checks before going ahead, to make sure that the
disk is indeed an MS-DOS disk (as opposed to, say an ext2 or MINIX disk). These checks

Chapter 2: Common features of all mtools commands 8

may reject partially corrupted disks, which might otherwise still be readable. To avoid
these checks, set the MTOOLS_SKIP_CHECK environmental variable or the corresponding

configuration file variable (see Section 3.4 [global variables]|, page 9)

2.9 Bugs

An unfortunate side effect of not guessing the proper device (when multiple disk capacities
are supported) is an occasional error message from the device driver. These can be safely
ignored.

The fat checking code chokes on 1.72 Mb disks mformatted with pre-2.0.7 mtools. Set
the environmental variable MTOOLS_FAT_COMPATIBILITY (or the corresponding con-
figuration file variable, Section 3.4 [global variables], page 9) to bypass the fat checking.

3 How to configure mtools for your environment

3.1 Description

This sections explains the syntax of the configurations files for mtools. The configura-
tion files are called /etc/mtools.conf and ~/.mtoolsrc. If the environmental variable
MTOOLSRC is set, its contents is used as the filename for a third configuration file. These
configuration files describe the following items:

e Global configuration flags and variables

e Per drive flags and variables

3.2 Location of the configuration files

/etc/mtools.conf is the system-wide configuration file, and ~/.mtoolsrc is the user’s
private configuration file.

On some systems, the system-wide configuration file is called /etc/default/mtools. conf
instead.

3.2.1 General configuration file syntax

The configuration files is made up of sections. Each section starts with a keyword identifying
the section followed by a colon. Then follow variable assignments and flags. Variable
assignments take the following form:

name=value
Flags are lone keywords without an equal sign and value following them. A section either
ends at the end of the file or where the next section begins.

Lines starting with a hash (#) are comments. Newline characters are equivalent to
whitespace (except where ending a comment). The configuration file is case insensitive,
except for item enclosed in quotes (such as filenames).

3.3 Default values

For most platforms, mtools contains reasonable compiled-in defaults for physical floppy
drives. Thus, you usually don’t need to bother with the configuration file, if all you want
to do with mtools is to access your floppy drives. On the other hand, the configuration file
is needed if you also want to use mtools to access your hard disk partitions and DOSEMU
image files.

3.4 Global variables

Global flags may be set to 1 or to 0.
The following global flags are recognized:
MTOOLS_SKIP_CHECK
If this is set to 1, mtools skips most of its sanity checks. This is needed to

read some Atari disks which have been made with the earlier ROMs, and which
would not be recognized otherwise.

Chapter 3: How to configure mtools for your environment 10

MTOOLS_FAT_COMPATIBILITY
If this is set to 1, mtools skips the fat size checks. Some disks have a bigger
FAT than they really need to. These are rejected if this option is not set.

MTOOLS_LOWER_CASE
If this is set to 1, mtools displays all-upper-case short filenames as lowercase.
This has been done to allow a behavior which is consistent with older versions
of mtools which didn’t know about the case bits.

MTOOLS_NO_VFAT
If this is set to 1, mtools won’t generate VFAT entries for filenames which are
mixed-case, but otherwise legal dos filenames. This is useful when working with
DOS versions which can’t grok VFAT long names, such as FreeDOS.

MTOOLS_DOTTED_DIR
In a wide directory, prints the short name with a dot instead of spaces separating
the basename and the extension.

MTOOLS_NAME_NUMERIC_TAIL
If this is set to one (default), generate numeric tails for all long names (~1). If set
to zero, only generate numeric tails if otherwise a clash would have happened.

MTOOLS_TWENTY_FOUR_HOUR_CLOCK
If 1, uses the European notation for times (twenty four hour clock), else uses
the UK/US notation (am/pm)

MTOOLS_LOCK_TIMEQUT
How long, in seconds, to wait for a locked device to become free. Defaults to
30.

Example: Inserting the following line into your configuration file instructs mtools to skip
the sanity checks:
MTOOLS_SKIP_CHECK=1
Global variables may also be set via the environment:
export MTOOLS_SKIP_CHECK=1
Global string variables may be set to any value:

MTOOLS_DATE_STRING
The format used for printing dates of files. By default, is dd-mm-yyyy.

3.5 Per drive flags and variables

3.5.1 General information

Per drive flags and values may be described in a drive section. A drive section starts with
drive "driveletter" :

Then follow variable-value pairs and flags.
This is a sample drive description:

drive a:
file="/dev/fd0" use_xdf=1

Chapter 3: How to configure mtools for your environment 11

3.5.2 Location information

For each drive, you need to describe where its data is physically stored (image file, physical
device, partition, offset).

file

partition

offset

The name of the file or device holding the disk image. This is mandatory. The
file name should be enclosed in quotes.

Tells mtools to treat the drive as a partitioned device, and to use the given
partition. Only primary partitions are accessible using this method, and they
are numbered from 1 to 4. For logical partitions, use the more general offset
variable. The partition variable is intended for removable media such as
Syquest disks, ZIP drives, and magneto-optical disks. Although traditional
DOS sees Syquest disks and magneto-optical disks as ‘giant floppy disks’
which are unpartitioned, OS/2 and Windows NT treat them like hard disks,
i.e. partitioned devices. The partition flag is also useful DOSEMU hdimages.
It is not recommended for hard disks for which direct access to partitions is
available through mounting.

Describes where in the file the MS-DOS file system starts. This is useful for
logical partitions in DOSEMU hdimages, and for ATARI ram disks. By default,
this is zero, meaning that the file system starts right at the beginning of the
device or file.

3.5.3 Disk Geometry Configuration

Geometry information describes the physical characteristics about the disk. Its has three

purposes:

formatting

filtering

The geometry information is written into the boot sector of the newly made disk.
However, you may also describe the geometry information on the command line.
See Section 4.12 [mformat], page 23, for details.

On some Unixes there are device nodes which only support one physical ge-
ometry. For instance, you might need a different node to access a disk as high
density or as low density. The geometry is compared to the actual geometry
stored on the boot sector to make sure that this device node is able to correctly
read the disk. If the geometry doesn’t match, this drive entry fails, and the next
drive entry bearing the same drive letter is tried. See Section 3.5.7 [multiple
descriptions|, page 15, for more details on supplying several descriptions for one
drive letter.

If no geometry information is supplied in the configuration file, all disks are ac-
cepted. On Linux (and on SPARC) there exist device nodes with configurable
geometry (/dev/£d0, /dev/fdl etc), and thus filtering is not needed (and ig-
nored) for disk drives. (Mtools still does do filtering on plain files (disk images)
in Linux: this is mainly intended for test purposes, as I don’t have access to a
Unix which would actually need filtering).

If you do not need filtering, but want still a default geometry for mformatting,
you may switch off filtering using the mformat_only flag.

Chapter 3: How to configure mtools for your environment 12

If you want filtering, you should supply the filter flag. If you supply a geom-
etry, you must supply one of both flags.

initial geometry

On devices that support it (usually floppy devices), the geometry information
is also used to set the initial geometry. This initial geometry is applied while
reading the boot sector, which contains the real geometry. If no geometry
information is supplied in the configuration file, or if the mformat_only flag is
supplied, no initial configuration is done.

On Linux, initial geometry is not really needed, as the configurable devices are
able to auto-detect the disk type accurately enough (for most common formats)
to read the boot sector.

Wrong geometry information may lead to very bizarre errors. That’s why I strongly
recommend that you add the mformat_only flag to your drive description, unless you really
need filtering or initial geometry.

The following geometry related variables are available:

cylinders
tracks

heads

sectors

The number of cylinders. (cylinders is the preferred form, tracks is consid-
ered obsolete)

The number of heads (sides).

The number of sectors per track.

Example: the following drive section describes a 1.44M drive:

drive a:

file="/dev/£d0H1440"
fat_bits=12

cylinders=80 heads=2 sectors=18
mformat_only

The following shorthand geometry descriptions are available:

1.44m

1.2m

720k

360k

high density 3 1/2 disk. Equivalent to: fat_bits=12 cylinders=80 heads=2
sectors=18

high density 5 1/4 disk. Equivalent to: fat_bits=12 cylinders=80 heads=2
sectors=15

double density 3 1/2 disk. Equivalent to: fat_bits=12 cylinders=80 heads=2
sectors=9

double density 5 1/4 disk. Equivalent to: fat_bits=12 cylinders=40 heads=2
sectors=9

The shorthand format descriptions may be amended. For example, 360k sectors=8
describes a 320k disk and is equivalent to: fat_bits=12 cylinders=40 heads=2 sectors=8

Chapter 3: How to configure mtools for your environment 13

3.5.4 Open Flags

Moreover, the following flags are available:

sync

nodelay

exclusive

All i/o operations are done synchronously

The device or file is opened with the O_NDELAY flag. This is needed on some
non-Linux architectures.

The device or file is opened with the O_EXCL flag. On Linux, this ensures
exclusive access to the floppy drive. On most other architectures, and for plain
files it has no effect at all.

3.5.5 General Purpose Drive Variables

The following general purpose drive variables are available. Depending to their type, these
variables can be set to a string (precmd, postcmd) or an integer (all others)

fat_bits

codepage

data_map

The number of FAT bits. This may be 12 or 16. This is very rarely needed, as
it can almost always be deduced from information in the boot sector. On the
contrary, describing the number of fat bits may actually be harmful if you get
it wrong. You should only use it if mtools gets the auto-detected number of fat
bits wrong, or if you want to mformat a disk with a weird number of fat bits.

Describes the DOS code page used for short filenames. This is a number between
1 and 999. By default, code page 850 is used. The reason for this is because
this code page contains most of the characters that are also available in ISO-
Latin-1. You may also specify a global code page for all drives by using the
global default_codepage parameter (outside of any drive description). This
parameters exists starting at version 4.0.0

Remaps data from image file. This is useful for image files which might need ad-
ditional zero-filled sectors to be inserted. Such is the case for instance for IBM
3174 floppy images. These images represent floppy disks with fewer sectors on
their first cylinder. These missing sectors are not stored in the image, but are
still counted in the filesystem layout. The data_map allows to fake these miss-
ing sectors for the upper layers of mtools. A data_map is a comma-separated
sequence of source type and size. Source type may be zero for zero-filled sec-
tors created by map, skip for data in raw image to be ignored (skipped), and
nothing for data to be used as is (copied) from the raw image. Datamap is
automatically complemented by an implicit last element of data to be used as
is from current offset to end of file. Each size is a number followed by a unit:
s for a 512 byte sector, K for Kbytes, M for megabytes, G for gigabytes, and
nothing for single bytes.

Example:

data_map=1s,zero31s,28s,skipls would be a map for use with IBM 3174
floppy images. First sector (1s, boot sector) is used as is. Then follow 31 fake
zero-filled sectors (zero31s), then the next 28 sectors from image (28s) are
used as is (they contain FAT and root directory), then one sector from image
is skipped (skipils), and finally the rest of image is used as is (implicit)

Chapter 3: How to configure mtools for your environment 14

precmd

postcmd

blocksize

Executes the given command before opening the device. On some variants of
Solaris, it is necessary to call ’volcheck -v’ before opening a floppy device,
in order for the system to notice that there is indeed a disk in the drive.
precmd="volcheck -v" in the drive clause establishes the desired behavior.

Executes the given command after closing the device. May be useful if mtools
shares the image file with some other application, in order to release the image
file to that application.

This parameter represents a default block size to be always used on this device.
AllT/O is done with multiples of this block size, independently of the sector size
registered in the file system’s boot sector. This is useful for character devices
whose sector size is not 512, such as for example CD-ROM drives on Solaris.

Only the file variable is mandatory. The other parameters may be left out. In that
case a default value or an auto-detected value is used.

3.5.6 General Purpose Drive Flags

A flag can either be set to 1 (enabled) or 0 (disabled). If the value is omitted, it is enabled.
For example, scsi is equivalent to scsi=1

nolock

scsi

privileged

Instruct mtools to not use locking on this drive. This is needed on systems with
buggy locking semantics. However, enabling this makes operation less safe in
cases where several users may access the same drive at the same time.

When set to 1, this option tells mtools to use raw SCSI I/O instead of the
standard read/write calls to access the device. Currently, this is supported
on HP-UX, Solaris and SunOS. This is needed because on some architectures,
such as SunOS or Solaris, PC media can’t be accessed using the read and write
system calls, because the OS expects them to contain a Sun specific "disk label".

As raw SCSI access always uses the whole device, you need to specify the
"partition" flag in addition

On some architectures, such as Solaris, mtools needs root privileges to be able
to use the scsi option. Thus mtools should be installed setuid root on Solaris if
you want to access Zip/Jaz drives. Thus, if the scsi flag is given, privileged
is automatically implied, unless explicitly disabled by privileged=0

Mtools uses its root privileges to open the device, and to issue the actual SCSI
I/O calls. Moreover, root privileges are only used for drives described in a
system-wide configuration file such as /etc/mtools.conf, and not for those
described in “/.mtoolsrc or $MTOOLSRC.

When set to 1, this instructs mtools to use its setuid and setgid privileges for
opening the given drive. This option is only valid for drives described in the
system-wide configuration files (such as /etc/mtools.conf, not ~/.mtoolsrc
or $MTOOLSRC). Obviously, this option is also a no op if mtools is not installed
setuid or setgid. This option is implied by ’scsi=1’, but again only for drives
defined in system-wide configuration files. Privileged may also be set explicitly

Chapter 3: How to configure mtools for your environment 15

to 0, in order to tell mtools not to use its privileges for a given drive even if
scsi=1 is set.

Mtools only needs to be installed setuid if you use the privileged or scsi
drive variables. If you do not use these options, mtools works perfectly well
even when not installed setuid root.

vold
Instructs mtools to interpret the device name as a vold identifier rather than
as a filename. The vold identifier is translated into a real filename using the
media_findname() and media_oldaliases() functions of the volmgt library.
This flag is only available if you configured mtools with the -—enable-new-vold
option before compilation.

swap

Consider the media as a word-swapped Atari disk.

use_xdf If this is set to a non-zero value, mtools also tries to access this disk as an XDF
disk. XDF is a high capacity format used by OS/2. This is off by default. See
Section 2.7.4 [XDF], page 7, for more details.

mformat_only
Tells mtools to use the geometry for this drive only for mformatting and not
for filtering.

filter Tells mtools to use the geometry for this drive both for mformatting and filter-
ing.

remote Tells mtools to connect to floppyd (see Section 4.1 [floppyd], page 17).

3.5.7 Supplying multiple descriptions for a drive
It is possible to supply multiple descriptions for a drive. In that case, the descriptions are
tried in order until one is found that fits. Descriptions may fail for several reasons:

1. because the geometry is not appropriate,

2. because there is no disk in the drive,

3. or because of other problems.

Multiple definitions are useful when using physical devices which are only able to support

one single disk geometry. Example:

drive a: file="/dev/fd0H1440" 1.44m
drive a: file="/dev/fdOH720" 720k
This instructs mtools to use /dev/fd0H1440 for 1.44m (high density) disks and
/dev/fd0H720 for 720k (double density) disks. On Linux, this feature is not really needed,
as the /dev/fd0 device is able to handle any geometry.
You may also use multiple drive descriptions to access both of your physical drives
through one drive letter:
drive z: file="/dev/fd0o"
drive z: file="/dev/fd1"
With this description, mdir z: accesses your first physical drive if it contains a disk. If
the first drive doesn’t contain a disk, mtools checks the second drive.

Chapter 3: How to configure mtools for your environment 16

When using multiple configuration files, drive descriptions in the files parsed last override
descriptions for the same drive in earlier files. In order to avoid this, use the drive+ or
+drive keywords instead of drive. The first adds a description to the end of the list (i.e.
it will be tried last), and the first adds it to the start of the list.

3.6 Location of configuration files and parsing order

The configuration files are parsed in the following order:
1. compiled-in defaults
2. /etc/mtools.conf
3. ~/.mtoolsrc.
4. $MTOOLSRC (file pointed by the MTOOLSRC environmental variable)

Options described in the later files override those described in the earlier files. Drives
defined in earlier files persist if they are not overridden in the later files. For instance,
drives A and B may be defined in /etc/mtools.conf and drives C and D may be defined
in 7/ .mtoolsrc However, if “/.mtoolsrc also defines drive A, this new description would
override the description of drive A in /etc/mtools.conf instead of adding to it. If you
want to add a new description to a drive already described in an earlier file, you need to
use either the +drive or drive+ keyword.

3.7 Backwards compatibility with old configuration file
syntax

The syntax described herein is new for version mtools-3.0. The old line-oriented syntax
is still supported. FEach line beginning with a single letter is considered to be a drive
description using the old syntax. Old style and new style drive sections may be mixed
within the same configuration file, in order to make upgrading easier. Support for the old
syntax will be phased out eventually, and in order to discourage its use, I purposefully omit
its description here.

17

4 Command list

This section describes the available mtools commands, and the command line parameters
that each of them accepts. Options which are common to all mtools commands are not
described here, Section 2.1 [arguments], page 3, for a description of those.

4.1 Floppyd

Floppyd is used as a server to grant access to the floppy drive to clients running on a
remote machine, just as an X server grants access to the display to remote clients. It has
the following syntax:

floppyd [-d] [-1] [-s port] [-T user| [-b ipaddr| [-x display| devicenames

floppyd is always associated with an X server. It runs on the same machine as its X
server, and listens on port 5703 and above.

4.1.1 Authentication

floppyd authenticates remote clients using the Xauthority protocol. Xhost authentication
is not supported. FEach floppyd is associated with an X server. When a remote client
attempts to connect to floppyd, it sends floppyd the X authority record corresponding to
floppyd’s X server. Floppyd in turn then tries to open up a connection to the X server
in order to verify the authenticity of the xauth record. If the connection to the X server
succeeds, the client is granted access. DISPLAY.

Caution: In order to make authentication work correctly, the local host should not be
listed in the xhost list of allowed hosts. Indeed, hosts listed in xhost do not need a correct
Xauthority cookie to connect to the X server. As floppyd runs on the same host as the X
server, all its probe connection would succeed even for clients who supplied a bad cookie.
This means that your floppy drive would be open to the world, i.e. a huge security hole. If
your X server does not allow you to remove localhost:0 and :0 from the xhost list, you
can prevent floppyd from probing those display names with the -1 option.

4.1.2 Command line options

d Daemon mode. Floppyd runs its own server loop. Do not supply this if you
start floppyd from inetd.conf

s port Port number for daemon mode. Default is 5703 + displaynumber. This flag
implies daemon mode. For example, for display hitchhiker:5, the port would
be 5708.

b ipaddr Bind address (for multi homed hosts). This flag implies daemon mode
r user Run the server under as the given user

x display X display to use for authentication. By default, this is taken from the DISPLAY
variable. If neither the x attribute is present nor DISPLAY is set, floppyd uses
:0.0.

devicenames is a list of device nodes to be opened. Default is /dev/£d0. Multiple devices
are only supported on mtools versions newer than 3.9.11.

Chapter 4: Command list 18

4.1.3 Connecting to floppyd

In order to use floppyd, add the flag remote to the device description in your ~/.mtoolsrc
file. If the flag remote is given, the file parameter of the device description is taken to be a
remote address. It’s format is the following: hostname: displaynumber[/[baseport|[/drive]].
When using this entry, mtools connects to port baseport+displaynumber at hostname. By
default baseport is 5703. The drive parameter is to distinguish among multiple drives
associated with a single display (only mtools versions more recent than 3.9.11)

4.1.4 Examples:

The following starts a floppy daemon giving access to /dev/£d0, listening on the default
port 5703, tied to the default X servers:

floppyd -d /dev/£d0
Each of the following starts a floppy daemon giving access to /dev/fd1, tied to the
:1 local X servers, and listening on port 5704. We assume that the local host is named
hitchhiker.
floppyd -d /dev/£fd0
floppyd -d -x :1 -p 5704 /dev/£fd0
If you want to start floppyd by inetd instead of running it as a daemon, insert the
following lines into /etc/services:

floppy daemon
floppyd-0 5703/tcp # floppy daemon for X server :0
floppyd-1 5704/tcp # floppy daemon for X server :1
And insert the following into /etc/inetd.conf (assuming that you have defined a user
named floppy in your /etc/passwd):
floppy daemon
floppyd-0 stream tcp wait floppy /usr/sbin/floppyd floppyd /dev/£d0
floppyd-1 stream tcp wait floppy /usr/sbin/floppyd floppyd -x :1 /dev/£dO
Note that you need to supply the X display names for the second floppyd. This is because
the port is opened by inetd.conf, and hence floppyd cannot know its number to interfere
the display number.
On the client side, insert the following into your ~/.mtoolsrc to define a drive letter
accessing floppy drive in your X terminal:
drive x: file="$DISPLAY" remote

If your X terminal has more than one drive, you may access the additional drives as
follows:

drive y: file="$DISPLAY//1" remote
drive z: file="$DISPLAY//2" remote

4.2 Floppyd_installtest

Floppyd_installtest is used to check for the presence of a running floppyd daemon. This
is useful, if you have a small front-end script to mtools, which decides whether to use floppyd
or not.

floppyd_installtest [-f] Connect-String

Chapter 4: Command list 19

If the —f option is specified, floppyd_installtest does a full X-Cookie authentication
and complains if this does not work.

The connect-String has the format described in the floppyd-section: host-
name: displaynumber|/ baseport]

4.3 Mattrib

Mattrib is used to change MS-DOS file attribute bits. It has the following syntax:
mattrib [~al+a] [-hl+h] [-r|+r] [-s|+s] [-/] [-p] [-X] msdosfile [msdosfiles . . .]

Mattrib adds attribute bits to an MS-DOS file (with the ‘+’ operator) or remove attribute
bits (with the ‘-’ operator).

Mattrib supports the following attribute bits:

a Archive bit. Used by some backup programs to indicate a new file.

r Read-only bit. Used to indicate a read-only file. Files with this bit set cannot
be erased by DEL nor modified.

S System bit. Used by MS-DOS to indicate a operating system file.

h Hidden bit. Used to make files hidden from DIR.

Mattrib supports the following command line flags:
/ Recursive. Recursively list the attributes of the files in the subdirectories.

X Concise. Prints the attributes without any whitespace padding. If neither the
" /" option is given, nor the msdosfile contains a wildcard, and there is only
one MS-DOS file parameter on the command line, only the attribute is printed,
and not the filename. This option is convenient for scripts

P Replay mode. Outputs a series of mformat commands that will reproduce the
current situation, starting from a situation as left by untarring the MS-DOS file
system. Commands are only output for attribute settings that differ from the
default (archive bit set for files, unset for directories). This option is intended
to be used in addition to tar. The readonly attribute is not taken into account,
as tar can set that one itself.

4.4 Mbadblocks

The mbadblocks command is used to mark some clusters on an MS-DOS filesystem bad.
It has the following syntax:

mbadblocks [-s sectorlist | -c clusterlist|-w] drive:

If no command line flags are supplied, Mbadblocks scans an MS-DOS filesystem for bad
blocks by simply trying to read them and flag them if read fails. All blocks that are unused
are scanned, and if detected bad are marked as such in the FAT.

This command is intended to be used right after mformat. It is not intended to salvage
data from bad disks.

Chapter 4: Command list 20

4.4.1 Command line options
c file Use a list of bad clusters, rather than scanning for bad clusters itself.

s file Use a list of bad sectors (counted from beginning of filesystem), rather than
trying for bad clusters itself.

W Write a random pattern to each cluster, then read it back and flag cluster as
bad if mismatch. Only free clusters are tested in such a way, so any file data is
preserved.

4.4.2 Bugs

Mbadblocks should (but doesn’t yet :-() also try to salvage bad blocks which are in use by
reading them repeatedly, and then mark them bad.

4.5 Mcat

The mcat command is used to copy an entire disk image from or to the floppy device. It
uses the following syntax:

mcat [-w| drive:

Mcat performs the same task as the Unix cat command. It is included into the mtools
package, since cat cannot access remote floppy devices offered by the mtools floppy daemon.
Now it is possible to create boot floppies remotely.

The default operation is reading. The output is written to stdout.

If the -w option is specified, mcat reads a disk-image from stdin and writes it to the
given device. Use this carefully! Because of the low-level nature of this command, it will
happily destroy any data written before on the disk without warning!

4.6 Mcd

The mcd command is used to change the mtools working directory on the MS-DOS disk. It
uses the following syntax:

mcd [msdosdirectory]

Without arguments, mcd reports the current device and working directory. Otherwise,
mcd changes the current device and current working directory relative to an MS-DOS file
system.

The environmental variable MCWD may be used to locate the file where the device and
current working directory information is stored. The default is $HOME/ .mcwd. Information
in this file is ignored if the file is more than 6 hours old.

Mcd returns 0 on success or 1 on failure.

Unlike MS-DOS versions of CD, mcd can be used to change to another device. It may be
wise to remove old .mcwd files at logout.

Chapter 4: Command list 21

4.7 Mcopy

The mcopy command is used to copy MS-DOS files to and from Unix. It uses the following
syntax:

mcopy [-bspanvmQT] [-D clash_option] sourcefile targetfile
mcopy [-bspanvmQT] [-D clash_option] sourcefile [sourcefiles...] targetdirectory
mcopy [-tnvm] MSDOSsourcefile

Mcopy copies the specified file to the named file, or copies multiple files to the named
directory. The source and target can be either MS-DOS or Unix files.

The use of a drive letter designation on the MS-DOS files, ’a:” for example, determines
the direction of the transfer. A missing drive designation implies a Unix file whose path
starts in the current directory. If a source drive letter is specified with no attached file name
(e.g. mcopy a: .), all files are copied from that drive.

If only a single, MS-DOS source parameter is provided (e.g. "mcopy a:foo.exe"), an
implied destination of the current directory (‘.’) is assumed.

A filename of ‘-’ means standard input or standard output, depending on its position
on the command line.

Mcopy accepts the following command line options:

t Text file transfer. Mcopy translates incoming carriage return/line feeds to line
feeds when copying from MS-DOS to Unix, and vice-versa when copying from
Unix to MS-DOS.

b Batch mode. Optimized for huge recursive copies, but less secure if a crash
happens during the copy.

s Recursive copy. Also copies directories and their contents
p Preserves the attributes of the copied files

When mcopying multiple files, quits as soon as one copy fails (for example due
to lacking storage space on the target disk)

a Text (ASCII) file transfer. ASCII translates incoming carriage return/line feeds
to line feeds.

T Text (ASCII) file transfer with character set conversion. Differs from -a in the
ASCIT also translates incoming PC-8 characters to ISO-8859-1 equivalents as
far as possible. When reading DOS files, untranslatable characters are replaced
by ’#’; when writing DOS files, untranslatable characters are replaced by ’.".

n No confirmation when overwriting Unix files. ASCII doesn’t warn the user when
overwriting an existing Unix file. If the target file already exists, and the -n
option is not in effect, mcopy asks whether to overwrite the file or to rename
the new file (see Section 2.5 [name clashes|, page 5) for details). In order to
switch off confirmation for DOS files, use -o.

m Preserve the file modification time.

v Verbose. Displays the name of each file as it is copied.

Chapter 4: Command list 22

4.7.1 Bugs

Unlike MS-DOS, the '+’ operator (append) from MS-DOS is not supported. However, you
may use mtype to produce the same effect:

mtype a:filel a:file2 a:file3 >unixfile
mtype a:filel a:file2 a:file3 | mcopy - a:msdosfile

4.8 Mdel
The mdel command is used to delete an MS-DOS file. Its syntax is:
mdel [-v] msdosfile | msdosfiles . .. |
Mdel deletes files on an MS-DOS file system.

Mdel asks for verification prior to removing a read-only file.

4.9 Mdeltree
The mdeltree command is used to delete an MS-DOS file. Its syntax is:
mdeltree [-v] msdosdirectory [msdosdirectories. . .]

Mdeltree removes a directory and all the files and subdirectories it contains from an
MS-DOS file system. An error occurs if the directory to be removed does not exist.

4.10 Mdir
The mdir command is used to display an MS-DOS directory. Its syntax is:
mdir [-/] [-f] [-w] [-a] [-b] msdosfile [msdosfiles. . .]
Mdir displays the contents of MS-DOS directories, or the entries for some MS-DOS files.

Mdir supports the following command line options:

/ Recursive output, just like MS-DOS’ -s option

W Wide output. With this option, mdir prints the filenames across the page
without displaying the file size or creation date.

a Also list hidden files.

f Fast. Do not try to find out free space. On larger disks, finding out the amount

of free space takes up some non trivial amount of time, as the whole FAT must
be read in and scanned. The -f flag bypasses this step. This flag is not needed
on FAT32 file systems, which store the size explicitly.

b Concise listing. Lists each directory name or filename, one per line (including
the filename extension). This switch displays no heading information and no
summary. Only a newline separated list of pathnames is displayed.

An error occurs if a component of the path is not a directory.

Chapter 4: Command list 23

4.11 Mdu

Mdu is used to list the space occupied by a directory, its subdirectories and its files. It is
similar to the du command on Unix. The unit used are clusters. Use the minfo command
to find out the cluster size.

mdu [-a] [msdosfiles . .. |
a All files. List also the space occupied for individual files.

s Only list the total space, don’t give details for each subdirectory.

4.12 Mformat

The mformat command is used to add an MS-DOS file system to a low-level formatted
diskette. Its syntax is:

mformat [-t cylinders|-T tot_sectors| [-h heads| [-s sectors]
[~£ size] [-1] [-4] [-8]
[-v volume_label]
[-F] [-8 sizecode]
[-M software_sector_size|
[-N serial_number] [-a]
[-C] [-H hidden_sectors] [-I fsVersion]
[-r root_sectors] [-L fat_len]
[-B boot_sector]| [-k]
[-m media_descriptor|
[-K backup_boot]

[-R nb_reserved_sectors]

[-c clusters_per_sector]

[-d fat_copies]

[-X] [-2 sectors_on_track_0] [-3]

[0 rate_on_track_0] [-A rate_on_other_tracks]

drive:

Mformat adds a minimal MS-DOS file system (boot sector, FAT, and root directory) to
a diskette that has already been formatted by a Unix low-level format.

The following options are supported: (The S, 2, 1 and M options may not exist if this
copy of mtools has been compiled without the USE_2M option)

The following options are the same as for MS-DOS’s format command:

v Specifies the volume label. A volume label identifies the disk and can be a
maximum of 11 characters. If you omit the -v switch, mformat will assign no
label to the disk.

f Specifies the size of the DOS file system to format. Only a certain number of
predefined sizes are supported by this flag; for others use the -h/-t/-s flags. The
following sizes are supported:

160 160K, single-sided, 8 sectors per track, 40 cylinders (for 5 1/4 DD)
180 160K, single-sided, 9 sectors per track, 40 cylinders (for 5 1/4 DD)
320 320K, double-sided, 8 sectors per track, 40 cylinders (for 5 1/4 DD)

Chapter 4: Command list 24

= = O Ww

360 360K, double-sided, 9 sectors per track, 40 cylinders (for 5 1/4 DD)

720 720K, double-sided, 9 sectors per track, 80 cylinders (for 3 1/2 DD)

1200 1200K, double-sided, 15 sectors per track, 80 cylinders (for 5 1/4
HD)

1440 1440K, double-sided, 18 sectors per track, 80 cylinders (for 3 1/2
HD)

2880 2880K, double-sided, 36 sectors per track, 80 cylinders (for 3 1/2
ED)

Specifies the number of tracks on the disk.

Specifies the number of total sectors on the disk. Only one of these 2 options
may be specified (tracks or total sectors)

The number of heads (sides).

Specifies the number of sectors per track. If the 2m option is given, number of
512-byte sector equivalents on generic tracks (i.e. not head 0 track 0). If the
2m option is not given, number of physical sectors per track (which may be
bigger than 512 bytes).

Formats a single side (equivalent to -h 1)

Formats a 360K double-sided disk (equivalent to -f 360). When used together
with -the 1 switch, this switch formats a 180K disk

Formats a disk with 8 sectors per track.

MS-DOS format’s q, u and b options are not supported, and s has a different meaning.

The following options are specific to mtools:

Format the partition as FAT32.
The size code. The size of the sector is 2 ~ (sizecode + 7).

formats the disk as an XDF disk. See Section 2.7.4 [XDF], page 7, for more
details. The disk has first to be low-level formatted using the xdfcopy utility
included in the fdutils package. XDF disks are used for instance for OS/2 install
disks.

2m format. The parameter to this option describes the number of sectors on
track 0, head 0. This option is recommended for sectors bigger than normal.

don’t use a 2m format, even if the current geometry of the disk is a 2m geometry.
Data transfer rate on track 0
Data transfer rate on tracks other than 0

software sector size. This parameter describes the sector size in bytes used by
the MS-DOS file system. By default it is the physical sector size.

Uses the requested serial number, instead of generating one automatically

Chapter 4: Command list 25

a If this option is given, an Atari style serial number is generated. Ataris store
their serial number in the OEM label.

C creates the disk image file to install the MS-DOS file system on it. Obviously,
this is useless on physical devices such as floppies and hard disk partitions, but
is interesting for image files.

H number of hidden sectors. This parameter is useful for formatting hard disk
partition, which are not aligned on track boundaries (i.e. first head of first track
doesn’t belong to the partition, but contains a partition table). In that case
the number of hidden sectors is in general the number of sectors per cylinder.
This is untested.

I Sets the fsVersion id when formatting a FAT32 drive. In order to find this out,
run minfo on an existing FAT32 drive, and mail me about it, so I can include
the correct value in future versions of mtools.

c Sets the size of a cluster (in sectors). If this cluster size would generate a FAT
that too big for its number of bits, mtools automatically increases the cluster
size, until the FAT is small enough. If no cluster size is specified explicitly,
mtools uses a default value as described in section “Number of sectors per
cluster” below.

d Sets the number of FAT copies. Default is 2. This setting can also be specified
using the MTOOLS_NFATS environment variable.

r Sets the size of the root directory (in sectors). Only applicable to 12 and 16 bit
FATs. This setting can also be specified using the MTOOLS_DIR_LEN environment
variable.

L Sets the length of the FAT.

B Use the boot sector stored in the given file or device, instead of using its own.

Only the geometry fields are updated to match the target disks parameters.

k Keep the existing boot sector as much as possible. Only the geometry fields and
other similar file system data are updated to match the target disks parameters.

K Sets the sector number where the backup of the boot sector should be stored
(only relevant on FAT32).

R Sets the number of reserved sectors for this filesystem. This must be at least
1 for non-FAT32 disks, and at least 3 for FAT disks (in order to accommodate
the boot sector, the info sector and the backup boot sector).

m Use a non-standard media descriptor byte for this disk. The media descriptor
is stored at position 21 of the boot sector, and as first byte in each FAT copy.
Using this option may confuse DOS or older mtools version, and may make the
disk unreadable. Only use if you know what you are doing.

b Use a non-standard bios disk number for this disk. By default, bios disk number
is inferred from media descriptor: 0x80 for media descriptor 0xf8, or 0x00
otherwise.

Chapter 4: Command list 26

To format a diskette at a density other than the default, you must supply (at least) those
command line parameters that are different from the default.

Mformat returns 0 on success or 1 on failure.
It doesn’t record bad block information to the Fat, use mbadblocks for that.

4.12.1 Number of sectors per cluster

If the user indicates no cluster size, mformat figures out a default value for it.

For FAT32 it uses the following table to determine the number of sectors per cluster,
depending on the total number of sectors on the filesystem.

more than 32*1024*1024*2: 64 sectors
between 16*1024*1024*2 and 32*1024*1024*2: 32 sectors
between 8*¥1024*1024*2 and 16*1024*1024*2: 16 sectors
between 260*1024*2 and 81024*1024*2: 1 sectors

This is derived from information on page 20 of Microsoft’s fatgen103 document, which
currently can be found at the following address:

https://staff.washington.edu/dittrich/misc/fatgen103.pdf
For FAT12 and FAT16, mformat uses an iterative approach, where it starts with a set

value, which it doubles until it is able to fill up the disk using that cluster size and a number
of cluster less than the maximum allowed.

The starting value is 1 for disks with one head or less than 2000 sectors, and 2 for disks
with more than one head, and more than 2000 sectors.

The number of sectors per cluster cannot go beyond 128.

4.13 Mkmanifest

The mkmanifest command is used to create a shell script (packing list) to restore Unix
filenames. Its syntax is:

mkmanifest [files |

Mkmanifest creates a shell script that aids in the restoration of Unix filenames that
got clobbered by the MS-DOS filename restrictions. MS-DOS filenames are restricted to 8
character names, 3 character extensions, upper case only, no device names, and no illegal
characters.

The mkmanifest program is compatible with the methods used in pcomm, arc, and
mtools to change perfectly good Unix filenames to fit the MS-DOS restrictions. This
command is only useful if the target system which will read the diskette cannot handle
VFAT long names.

4.13.1 Example
You want to copy the following Unix files to a MS-DOS diskette (using the mcopy command).

very_long_name
2.many.dots
illegal:
good.c

Chapter 4: Command list 27

prn.dev
Capital
ASCII converts the names to:

very_lon

2xmany.dot

illegalx

good.c

xprn.dev

capital
The command:

mkmanifest very_long_name 2.many.dots illegal: good.c prn.dev Capital >manifest

would produce the following:

mv very_lon very_long_name
mv 2xmany.dot 2.many.dots
mv illegalx illegal:

mv xprn.dev prn.dev

mv capital Capital

Notice that "good.c" did not require any conversion, so it did not appear in the output.

Suppose I've copied these files from the diskette to another Unix system, and I now want
the files back to their original names. If the file "manifest" (the output captured above)
was sent along with those files, it could be used to convert the filenames.

4.13.2 Bugs

The short names generated by mkmanifest follow the old convention (from mtools-2.0.7)
and not the one from Windows 95 and mtools-3.0.

4.14 Minfo

The minfo command prints the parameters of a MS-DOS file system, such as number of
sectors, heads and cylinders. It also prints an mformat command line which can be used
to create a similar MS-DOS file system on another media. However, this doesn’t work with
2m or XDF media, and with MS-DOS 1.0 file systems

minfo drive:

Minfo supports the following option:

v Prints a hexdump of the boot sector, in addition to the other information

4.15 Mlabel

The mlabel command adds a volume label to a disk. Its syntax is:
mlabel [-vcsn] [-N serial] drive:[new_label

Mlabel displays the current volume label, if present. If new_label is not given, and if
neither the ¢ nor the s options are set, it prompts the user for a new volume label. To
delete an existing volume label, press return at the prompt.

The label is limited to 11 single-byte characters, e.g. Name1234567.

Chapter 4: Command list 28

Reasonable care is taken to create a valid MS-DOS volume label. If an invalid label is
specified, mlabel changes the label (and displays the new label if the verbose mode is set).
Mlabel returns 0 on success or 1 on failure.

Mlabel supports the following options:

c Clears an existing label, without prompting the user
s Shows the existing label, without prompting the user.
n Assigns a new (random) serial number to the disk

N serial Sets the supplied serial number. The serial number should be supplied as an 8
digit hexadecimal number, without spaces

4.16 Mmd

The mmd command is used to make an MS-DOS subdirectory. Its syntax is:
mmd [-D clash_option] msdosdirectory | msdosdirectories. . . |

Mmd makes a new directory on an MS-DOS file system. An error occurs if the directory
already exists.

4.17 Mmount

The mmount command is used to mount an MS-DOS disk. It is only available on Linux, as
it is only useful if the OS kernel allows configuration of the disk geometry. Its syntax is:

mmount msdosdrive [mountargs]

Mmount reads the boot sector of an MS-DOS disk, configures the drive geometry, and
finally mounts it passing mountargs to mount. If no mount arguments are specified, the
name of the device is used. If the disk is write protected, it is automatically mounted read
only.

4.18 Mmove

The mmove command is used to move or rename an existing MS-DOS file or subdirectory.

mmove [-v] [-D clash_option] sourcefile targetfile
mmove [-v| [-D clash_option| sourcefile | sourcefiles. . . | targetdirectory

Mmove moves or renames an existing MS-DOS file or subdirectory. Unlike the MS-DOS
version of MOVE, mmove is able to move subdirectories. Files or directories can only be moved
within one file system. Data cannot be moved from MS-DOS to Unix or vice-versa. If you
omit the drive letter from the target file or directory, the same letter as for the source is
assumed. If you omit the drive letter from all parameters, drive a: is assumed by default.

4.19 Mpartition

The mpartition command is used to create MS-DOS file systems as partitions. This is
intended to be used on non-Linux systems, i.e. systems where fdisk and easy access to SCSI
devices are not available. This command only works on drives whose partition variable is
set.

mpartition -p drive

Chapter 4: Command list 29

mpartition -r drive

mpartition -I [-B bootSector| drive
mpartition -a drive

mpartition -d drive

mpartition -c [-s sectors] [-h heads]
[-t cylinders] [-v [-T type] [-b

begin] [-1 length] [-f]

Mpartition supports the following operations:

Prints a command line to recreate the partition for the drive. Nothing is printed
if the partition for the drive is not defined, or an inconsistency has been de-
tected. If verbose (-v) is also set, prints the current partition table.

Removes the partition described by drive.
Initializes the partition table, and removes all partitions.
Creates the partition described by drive.

"Activates" the partition, i.e. makes it bootable. Only one partition can be
bootable at a time.

"Deactivates" the partition, i.e. makes it unbootable.

If no operation is given, the current settings are printed.

For partition creations, the following options are available:

s sectors The number of sectors per track of the partition (which is also the number of

h heads

sectors per track for the whole drive).

The number of heads of the partition (which is also the number of heads for
the whole drive). By default, the geometry information (number of sectors and
heads) is figured out from neighboring partition table entries, or guessed from
the size.

t cylinders

b begin

1 lIength

The number of cylinders of the partition (not the number of cylinders of the
whole drive.

The starting offset of the partition, expressed in sectors. If begin is not given,
mpartition lets the partition begin at the start of the disk (partition number
1), or immediately after the end of the previous partition.

The size (length) of the partition, expressed in sectors. If end is not given,
mpartition figures out the size from the number of sectors, heads and cylinders.
If these are not given either, it gives the partition the biggest possible size,
considering disk size and start of the next partition.

The following option is available for all operation which modify the partition table:

Usually, before writing back any changes to the partition, mpartition performs
certain consistency checks, such as checking for overlaps and proper alignment
of the partitions. If any of these checks fails, the partition table is not changed.
The -£ allows you to override these safeguards.

Chapter 4: Command list 30

The following options are available for all operations:

v Together with —p prints the partition table as it is now (no change operation),
or as it is after it is modified.

Vv If the verbosity flag is given twice, mpartition will print out a hexdump of the
partition table when reading it from and writing it to the device.

The following option is available for partition table initialization:

B bootSector
Reads the template master boot record from file bootSector.

4.19.1 Choice of partition type

Mpartition proceeds as follows to pick a type for the partition:
- FAT32 partitions are assigned type 0x0C (“Win95 FAT32, LBA”)

- For all others, if the partition fits entirely within the first 65536 sectors of the disk,
assign 0x01 (“DOS FAT12, CHS”) for FAT12 partition and 0x04 (“DOS FAT16, CHS”) for
FAT16 partitions

- If not covered by the above, assign 0x06 (“DOS BIG FAT16 CHS”) if partition fits entirely
within the first 1024 cylinders (CHS mode)

- All remaining cases get 0xOE (“Win95 BIG FAT16, LBA”)

If number of fat bits is not known (not specified in drive’s definition), then FAT12 is
assumed for all drives with less than 4096 sectors, and FAT16 for those with more than
4096 sectors.

This corresponds more or less to the definitions outlined at https://en.wikipedia.org/wiki/Partition_
type#List_of_partition_IDs and https://docs.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-2000-server/cc977219(v=technet.10), with two
notable differences:

- If fat bits are unknown, the reference documents consider drives with less than 32680
sectors to be FAT12. Mtools uses 4096 sectors as the cutoff point, as older versions of
DOS only support FAT12 on disks with less than 4096 sectors (and these older versions
are the ones which would be most likely to use FAT12 in the first place).

- The reference documents use a 8GB (wikipedia) or a 4GB (Microsoft) cutoff between
0x06 (DOS BIG FAT16 CHS) and 0xOE. Mtools uses 1024 cylinders. This is because any
partition beyond 1024 cylinders must be LBA and cannot be CHS. 8 GB works out to
be the biggest capacity which can be represented as CHS (63 sectors, 255 heads and
1024 cylinders). 4GB is the capacity limit for windows 2000, so it makes sense that a
documentation for windows 2000 would specify this as the upper limit for any partition
type.

4.20 Mrd

The mrd command is used to remove an MS-DOS subdirectory. Its syntax is:
mrd [-v] msdosdirectory [msdosdirectories. . .]

Mrd removes a directory from an MS-DOS file system. An error occurs if the directory
does not exist or is not empty.

Chapter 4: Command list 31

4.21 Mren

The mren command is used to rename or move an existing MS-DOS file or subdirectory.
Its syntax is:

mren [-voOsSrRA| sourcefile targetfile
Mren renames an existing file on an MS-DOS file system.
In verbose mode, Mren displays the new filename if the name supplied is invalid.

If the first syntax is used (only one source file), and if the target name doesn’t contain
any slashes or colons, the file (or subdirectory) is renamed in the same directory, instead
of being moved to the current mcd directory as would be the case with mmove. Unlike the
MS-DOS version of REN, mren can be used to rename directories.

4.22 Mshortname

The mshortname command is used to display the short name of a file. Syntax:
mshortname files

The shortname is displayed as it is stored in raw format on disk, without any character
set conversion.

4.23 Mshowfat

The mshowfat command is used to display the FAT entries for a file. Syntax:
mshowfat [-o offset| files

If no offset is given, a list of all clusters occupied by the file is printed. If an offset is
given, only the number of the cluster containing that offset is printed.

4.24 Mtoolstest

The mtoolstest command is used to tests the mtools configuration files. To invoke it,
just type mtoolstest without any arguments. Mtoolstest reads the mtools configuration
files, and prints the cumulative configuration to stdout. The output can be used as a
configuration file itself (although you might want to remove redundant clauses). You may
use this program to convert old-style configuration files into new style configuration files.

4.25 Mtype

The mtype command is used to display contents of an MS-DOS file. Its syntax is:
mtype [-ts] msdosfile [msdosfiles. . .]
Mtype displays the specified MS-DOS file on the screen.

In addition to the standard options, Mtype allows the following command line options:

t Text file viewing. Mtype translates incoming carriage return/line feeds to line
feeds.
s Mtype strips the high bit from the data.

The mcd command may be used to establish the device and the current working directory
(relative to MS-DOS), otherwise the default is A: /.

Chapter 4: Command list 32

Mtype returns 0 on success, 1 on utter failure, or 2 on partial failure.

Unlike the MS-DOS version of TYPE, mtype allows multiple arguments.

4.26 Mzip

The mzip command is used to issue ZIP disk specific commands on Linux, Solaris or HP-UX.
Its syntax is:

mzip [-epqrwx|

Mzip allows the following command line options:

e Ejects the disk.

f Force eject even if the disk is mounted (must be given in addition to -e).

r Write protect the disk.

W Remove write protection.

P Password write protect.

X Password protect

u Temporarily unprotect the disk until it is ejected. The disk becomes writable,

and reverts back to its old state when ejected.
q Queries the status

To remove the password, set it to one of the password-less modes —-r or -w: mzip will
then ask you for the password, and unlock the disk. If you have forgotten the password, you
can get rid of it by low-level formatting the disk (using your SCSI adapter’s BIOS setup).

The ZipTools disk shipped with the drive is also password protected. On MS-DOS or
on a Magc, this password is automatically removed once the ZipTools have been installed.
From various articles posted to Usenet, I learned that the password for the tools disk is
APlaceForYourStuff!. Mzip knows about this password, and tries it first, before prompting
you for a password. Thus mzip -w z: unlocks the tools disk?. The tools disk is formatted
in a special way so as to be usable both in a PC and in a Mac. On a PC, the Mac file
system appears as a hidden file named partishn.mac. You may erase it to reclaim the 50
Megs of space taken up by the Mac file system.

4.26.1 Bugs

This command is a big kludge. A proper implementation would take a rework of significant
parts of mtools, but unfortunately I don’t have the time for this right now. The main down-
side of this implementation is that it is inefficient on some architectures (several successive
calls to mtools, which defeats mtools’ caching).

1 To see the articles, search for APlaceForYourStuff using Google Groups

2 I didn’t know about this yet when I bought my own Zip drive. Thus I ended up reformatting my tools
disk, and hence I haven’t had the opportunity to test the password yet. If anybody still has their tools
disk with the original password, could you try it out? Thanks in advance

33

5 Architecture specific compilation flags

To compile mtools, first invoke ./configure before make. In addition to the standard
autoconfigure flags, there are two architecture specific flags available.

./configure --enable-xdf
./configure --disable-xdf
Enables support for XDF disks. This is on by default. See Section 2.7.4 [XDF],

page 7, for details.

./configure --enable-vold

./configure --disable-vold
Enables support for vold on Solaris. When used in conjunction with vold,
mtools should use different device nodes than for direct access.

./configure --enable-new-vold

./configure --disable-new-vold
Enables new support for vold on Solaris. This is supposed to work more
smoothly than the old support.

./configure --enable-floppyd

./configure --disable-floppyd
Enables support for floppyd. By default, floppyd support is enabled as long as
the necessary X includes and libraries are available.

34

6 Porting mtools to architectures which are not
supported yet

This chapter is only interesting for those who want to port mtools to an architecture which
is not yet supported. For most common systems, default drives are already defined. If
you want to add default drives for a still unsupported system, run configuration.guess, to
see which identification autoconf uses for that system. This identification is of the form
cpu-vendor-os (for example sparc-sun-sunos). The cpu and the OS parts are passed to the
compiler as preprocessor flags. The OS part is passed to the compiler in three forms.

1. The complete OS name, with dots replaced by underscores. SCO3.2v2 would yield

sco3_2v2

2. The base OS name. SC0O3.2v2 would yield Sco
3. The base OS name plus its major version. SCO3.2v2 would yield Sco3

All three versions are passed, if they are different.
To define the devices, use the entries for the systems that are already present as tem-
plates. In general, they have the following form:
#if (defined (my_cpu) && defined(my_os))
#define predefined_devices
struct device devices[] = {
{ "/dev/first_drive", 'drive_letter', drive_description},

{ "/dev/last_drive", 'drive_letter', drive_description}

}
#define INIT_NOOP
#tendif

" /dev/first_drive" is the name of the device or image file representing the drive.
Drive_letter is a letter ranging from a to z giving access to the drive. Drive_description
describes the type of the drive:

ED312 extra density (2.88M) 3 1/2 disk

HD312 high density 3 1/2 disk

DD312 double density 3 1/2 disk

HD514 high density 5 1/4 disk

DD514 double density 5 1/4 disk

DDsmall 8 sector double density 5 1/4 disk
SS514 single sided double density 5 1/4 disk
SSsmall single sided 8 sector double density 5 1/4 disk
GENFD generic floppy drive (12 bit FAT)
GENHD generic hard disk (16 bit FAT)

GEN generic device (all parameters match)
ZIPJAZ (flags)

generic ZIP drive using normal access. This uses partition 4. Flags are any
special flags to be passed to open.

Chapter 6: Porting mtools to architectures which are not supported yet 35

RZIPJAZ (flags)
generic ZIP drive using raw SCSI access. This uses partition 4. Flags are any
special flags to be passed to open.

REMOTE the remote drive used for floppyd. Unlike the other items, this macro also
includes the file name (3DISPLAY) and the drive letter (X)

Entries may be described in more detail:
fat_bits,open_flags,cylinders,heads,sectors,DEF_ARG
or, if you need to describe an offset (file system doesn’t start at beginning of file system)

fat_bits, open_flags, cylinders, heads, sectors, offset, DEF_ARGO
fat_bits is either 12, 16 or 0. 0 means that the device accepts both types of FAT.

open_flags
may include flags such as O_NDELAY, or O_RDONLY, which might be neces-
sary to open the device. 0 means no special flags are needed.

cylinders,heads,sectors
describe the geometry of the disk. If cylinders is 0, the heads and sectors
parameters are ignored, and the drive accepts any geometry.

offset is used if the DOS file system doesn’t begin at the start of the device or image
file. This is mostly useful for Atari Ram disks (which contain their device driver
at the beginning of the file) or for DOS emulator images (which may represent
a partitioned device.

Definition of defaults in the devices file should only be done if these same devices are
found on a large number of hosts of this type. In that case, could you also let me know
about your new definitions, so that I can include them into the next release. For purely
local file, I recommend that you use the /etc/mtools.conf and ~/.mtoolsrc configuration
files.

However, the devices files also allows you to supply geometry setting routines. These
are necessary if you want to access high capacity disks.

Two routines should be supplied:
1. Reading the current parameters
static inline int get_parameters(int fd, struct generic_floppy_struct *floppy)

This probes the current configured geometry, and return it in the structure
generic_floppy_struct (which must also be declared). Fd is an open file descriptor for
the device, and buf is an already filled in stat structure, which may be useful. This
routine should return 1 if the probing fails, and 0 otherwise.

2. Setting new parameters

static inline int set_parameters(int fd, struct generic_floppy_struct *floppy)
struct stat *buf)

This configures the geometry contained in floppy on the file descriptor fd. Buf is the
result of a stat call (already filled in). This should return 1 if the new geometry cannot
be configured, and 0 otherwise.

Chapter 6: Porting mtools to architectures which are not supported yet 36

A certain number of preprocessor macros should also be supplied:

TRACKS (£ 1oppy)
refers to the track field in the floppy structure

HEADS (floppy)
refers to the heads field in the floppy structure

SECTORS (f1oppy)
refers to the sectors per track field in the floppy structure

SECTORS_PER_DISK (f1oppy)
refers to the sectors per disk field in the floppy structure (if applicable, otherwise
leave undefined)

BLOCK_MAJOR
major number of the floppy device, when viewed as a block device

CHAR_MAJOR
major number of the floppy device, when viewed as a character device (a.k.a.
"raw" device, used for fsck) (leave this undefined, if your OS doesn’t have raw
devices)

For the truly high capacity formats (XDF, 2m, etc), there is no clean and documented
interface yet.

Command Index

(Index is nonexistent)

37

Variable index

C

cylinderso

eXClUSIVE ...t

F

38

M
mformat_only............. 15
MTOOLS_DOTTED_DIR......cvuiiiniiiininnnnnn 9
MTOOLS_FAT_COMPATIBILITY..........ccovuiinunnn. 9
MTOOLS_LOCK_TIMEQUT...........ciuiniiininnnnnn, 9
MTOOLS_LOWER_CASEt 9
MTOOLS_NAME_NUMERIC_TAIL..............ccou... 9
MTOOLS_NO_VFAT e 9
MTOOLS_SKIP_CHECKottt 9
MTOOLS_TWENTY_FQOUR_HOUR_CLOCK 9
MTOOLSRC . o ov ettt et et 9
N

nodelay ... 13
S

Y=Y o s = P 12
SYTIC ¢ 13
T

BrACKS . ettt e 12
U

Concept index

ALPHA patches ...t 2
APlaceForYourStuff............................ 32
Archive bit ... 19
Atari ... 15
Atari Ram disk 11

B

Backwards compatibility L 16
Bad blocks.............. oo 19
bigger Sectorsoiiiiiiii i 6
blocksize......... ... o 14
UGS . e 2

Case sensitivity ... 6
Changing file attributes........................ 19
character devices........... o i 14
Checking configuration file..................... 31
Clustersof afile.......... ... oo i 31
Command list........ i 17
Compile time configuration..................... 33
Compiled-in defaults........................... 34
Concatenating MS-DOS files................... 21
Configuration file oL 9
Configuration file name 9
Configuration file name (parsing order)......... 16
Configuration file parsing order 16
Configuration file syntax 9
Configuration file, old syntax................... 16
Configuration files............. 9
Configuration of disk geometry................. 11
Copying an entire disk image................... 20
Copying MS-DOS files 21
CR/LF conversionscoooouon... 21
Creating a directorycoooia.. 28
Current working directory....................... 4
Current working directory (changing the)....... 20

39

D

Default configuration................ 9
Default directory............cooiiiiiiiiiL. 4
Default directory (changing the) 20
Default values. ..., 9
Deleting a directory.......... 30
deleting an MS-DOS directory recursively 22
deleting MS-DOS files................cooiinit. 22
Description of disk geometry................... 11
diffs ..o 2
Directory 4
Directory (changing)c.coevuiueenn. 20
Directory creation 28
Directory listing ... 22
Directory removing 30
disable lockingol 14
Disk Geometry........cooviiiiiiiiiii 11
Diskimage ..o 20
Disk label...... ..o i 27
DMF disks....ooouiei 6
DOSEMU hard disk image 11
Drive configuration 10
Drive configuration, example................... 10
Drive description.o 10
Drive description, example 10
Drive independent configuration variables 9
AU 23
Duplicate file names............... 5

E

Ejecting a Zip/Jaz disk 32
Environmental variables......................... 9
Erasing a directory............. L 30
erasing an MS-DOS directory recursively....... 22
erasing MS-DOS files 22
exclusive access toadrive.............. 13

Executing commands after closing the device... 14
Executing commands before
opening the device............... 14

Fat o 31
fdformat........ 6
File name of devicenode....................... 11
File system creation................, 23
Filenames............... 3
F1oPPYA .o v 17
Floppyd cat....... ... i 20
floppyd_installtest.................... 18
Format of disk..............ccoiiiiiiiiii.. 11
Formats, high capacity 6

Formatting disks............. oL 23

Concept index

getting parameters of a MS-DOS file system. ... 27
Global configuration variables................... 9

H

Hdimage......... ... i 11
Hidden files...........coo i 19
High capacity formats........................... 6
High capacity formats, mounting............... 28
High density disk ...t 11

I

Image file......... ..o i 11
Initializing disks oo i 23

J

Jaz disk (utilities). ...l 32
Jaz disks (partitioning them)................... 28
Jaz disks (partitions)............. 11
Jaz disks (raw SCSI access) 14

L

Labeling adisk ... 27
Linux enhancements (High Capacity Formats)... 6
Linux enhancements (mmount)................. 28
List of available commands..................... 17
Listing a directoryo 22
Listing space occupied by directories and files .. 23
Location of configuration files 9
Location of configuration files (parsing order)... 16
locking (disabling it)c.ooiiiiit 14
Long filename.......... ... 4
Low density disk................ .ol 11

M

Magneto-optical disks.......................... 11
mailing list....... ..o 2
Making a directory.............coooiiiiiiiia.. 28
Marking blocks as bad 19
mattrib 19
mbadblocks........... 19
1 o= P 20
IMCA e ettt e e e 20
mcd (introduction) 4
TICOPY - - e e 21
Mewd file. ... 20
mdel ..o 22
MAELtree ... oot i 22

40
MAU . . 23
mformat 23
mformat (geometry used for).................. 11
mformat parameters, 27
MInfo. 27
mkmanifest......... ... oo il 26
mlabel.........ooiiiiiiiiiii 27
mmd. ... 28
MMOUNT . ..ttt t ittt i 28
MIMOVE . oottt et ettt ettt 28
Mounting a disk oo 28
Moving files (mmove) 28
Moving files (mren)oo.... 31
mpartition..........ol 28
MEA .o 30
1 o= ¢ 31
mshortname............. ...t 31
mshowfat 31
mtoolstest....... ... i 31
MZIP. .o 32
N
Name clashes ... 5
Name of configuration files...................... 9
Name of configuration files (parsing order) 16
Name of devicenode.................coouo... 11
O
Occupation of space by directories and files. 23
Odd formats ... 6
Old configuration file syntax 16
open flags...... i 13
OPtioNS . ..t et 3
0S/2 (layout of removable media).............. 11
0OS/2 (XDF disks) . «ovvvitiiiiniiiiiieaaae 7
Overwriting files i i 5
P
packing list 26
Parsingorder............ol 16
Partitioned image file 11
partitions (creating) 28
password protected Zip disks............. 32
patches ... 2
plain floppy: device xxx busy................... 14
Porting o 34
Primary file name (long names) 4
Primary file name (name clashes)................ 5

Concept index

R

Ramdisk............oo o i i 11
raw devicet 14
Read errors......... ... o it 19
Read-only files (changing the attribute) 19
Read-only files (listing them)................... 22
Reading MS-DOS filesocoiiint. 21
recursively removing an MS-DOS directory 22
remote floppy access...............a... 17, 18
Removable media............. oo 11
Removing a directory 30
removing an MS-DOS directory recursively 22
removing MS-DOS files 22
Renaming files (mmove)........................ 28
Renaming files (mren) 31

S

SCSIdeviCes ... ovuvii i 14
Secondary file name (long names) 4
Secondary file name (name clashes).............. 5
setgid installation.............................. 14
setuid installation............. L 14
setuid installation (needed for raw SCSI I/0)... 14
Solaris (compile time configuration of vold)..... 33
Solaris (Raw access to SCSI devices

such as Zip & Jaz) ...t 14
Solaris (volcheck) ... 14
Solaris (vold) ... 15
Space occupied by directories and files.......... 23
Special formats o i 6
Subdirectory creation 28
Subdirectory removing 30
SunOS (Raw access to SCSI devices

such as Zip & Jaz)................. ... L 14
synchronous writing........................ ... 13
Syntax of the configuration file.................. 9
Syquest disks oo 11
Syquest disks (raw SCSI access)................ 14
System files. ... 19

41
T
Testing configuration file for correctness........ 31
Text fileso 21
Tools disk (Zip and Jaz drives)................. 32
\V
Verifying configuration file..................... 31
VFAT-style filenames.................cooiun.. 4
VZACODY « e v v vv vttt e 6
Vold (compile time configuration) 33
Vold (mediamgr) ... 15
Weird formats ... 6
Windows 95 (DMF disks) 6
Windows 95-style file names..................... 4
Windows NT (layout of removable media)...... 11
Wordswapped 15
Working directory 4, 20
Write protecting a Zip/Jaz disk 32
Writing MS-DOS files................... 21
X
Xterminal ool 17, 18
XDFE disks ... 7
XDF disks (compile time configuration) 33
XDF disks (how to configure) 15
Z
Zip disk (utilities)............ ...l 32
Zip disks (partitioning them)................... 28
Zip disks (partitions)................ il 11
Zip disks (raw SCSI access) 14

ZipTools disk 32

	Introduction
	1 Where to get mtools
	2 Common features of all mtools commands
	Options and filenames
	Drive letters
	Current working directory
	VFAT-style long file names
	Name clashes
	Case sensitivity of the VFAT file system
	high capacity formats
	More sectors
	Bigger sectors
	2m
	XDF

	Exit codes
	Bugs

	3 How to configure mtools for your environment
	Description
	Location of the configuration files
	General configuration file syntax

	Default values
	Global variables
	Per drive flags and variables
	General information
	Location information
	Disk Geometry Configuration
	Open Flags
	General Purpose Drive Variables
	General Purpose Drive Flags
	Supplying multiple descriptions for a drive

	Location of configuration files and parsing order
	Backwards compatibility with old configuration file syntax

	4 Command list
	Floppyd
	Authentication
	Command line options
	Connecting to floppyd
	Examples:

	Floppyd_installtest
	Mattrib
	Mbadblocks
	Command line options
	Bugs

	Mcat
	Mcd
	Mcopy
	Bugs

	Mdel
	Mdeltree
	Mdir
	Mdu
	Mformat
	Number of sectors per cluster

	Mkmanifest
	Example
	Bugs

	Minfo
	Mlabel
	Mmd
	Mmount
	Mmove
	Mpartition
	Choice of partition type

	Mrd
	Mren
	Mshortname
	Mshowfat
	Mtoolstest
	Mtype
	Mzip
	Bugs

	5 Architecture specific compilation flags
	6 Porting mtools to architectures which are not supported yet
	Command Index
	Variable index
	Concept index

